Recent Changes · Search:

Dispense


Navigation Tips - Dritte


PmWiki

pmwiki.org

edit SideBar

PompeDiCalore

< Coefficiente di effetto frigorifero | Indice | Entropia >



Condizionatore

Il condizionatore è basato su un ciclo frigorifero (percorso in senso antiorario nel piano {$pV$}). Per semplicità lo illustriamo in figura 1 con lo schema di bilancio energetico, supponendo che si tratti di un ciclo di Carnot i cui termostati sono rispettivamente la casa (quello freddo) e l'ambiente esterno (quello caldo). Il coefficiente frigorifero vale

{$$\varepsilon = \frac {Q_A}{Q_D-Q_A} = \frac {T_F}{T_C - T_F}$$}

Con questo sistema ideale, ad esempio, se si vuole mantenere in casa la temperatura di {$T_F =25$} C quando fuori essa vale {$T_C=35$} C, con un lavoro totale di {$|W|=100$} J si estraggono {$Q_A = \varepsilon |W| = 2980$} J per ciclo. L'efficienza pari quasi a 30 è dovuta al fatto che il numeratore è una temperatura ambiente, ossia un numero abbastanza grande, circa 300 K, mentre i denominatore è la differenza di due temperature ambiente, ossia un numero piccolo, 10 K nell'esempio. E' molto efficace nel pompare calore dall'ambiente interno a quello esterno.

Se si volessero mantenere in casa 20 C (solo 5 gradi di meno dell'esempio precedente), il numeratore diminuirebbe di meno del 2%, ma il denominatore aumenterebbe del 50% determinando una riduzione totale della frazione a circa il 65% del valore calcolato prima. In definitiva l'efficienza del condizionatore cresce rapidamente con la richiesta una temperatura meno fredda.

Figura 1.Un condizionatore d'estate: la casa è mentenuta più fredda dell'ambiente esterno a costo di un lavoro fatto sul gas del condizionatore.

Indice


Pompa di calore

Se l'ambiente esterno diventa freddo si vuole riscaldare la casa. Lo stesso ciclo frigorifero può funzionare efficacemente anche in qesta condizione, come mostrato in Figura 2. Ad essere pignoli ora la quantità di interesse è {$Q_D$}, quindi il coefficiente di rendimento andrebbe ridefinito come

{$$\mbox{C.P.} = \frac {Q_D}{Q_D-Q_A} = \frac {T_C}{T_C-T_F}$$}

che cambia di poco. Continua ad essere vero che il numeratore è molto maggiore del denminatore. Ad esempio per garantire {$T_C=20$} C in casa d'autunno quando fuori {$T_F=10$}, si ha {$\mbox{C.P.}=29.3$}, mentre per garantire la stessa temperatura d'inverno, ad esmpio quando {$T_F=-10$} C, il coefficiente scende ad un terzo del valore originale, {$\mbox{C.P.}=9.8$}.

Figura 2.Pompa di calore d'autunno e d'inverno: la casa è mentenuta più calda dell'ambiente esterno a costo di un lavoro fatto sul gas del condizionatore.

Indice



< Coefficiente di effetto frigorifero | Indice | Entropia >

Edit - History - Print - PDF - Recent Changes - Search
Page last modified on May 24, 2018, at 01:21 PM