Recent Changes · Search:

Dispense


Navigation Tips - Dritte


PmWiki

pmwiki.org

edit SideBar

WikiSandbox

Feel free to use this page to experiment with the Text Formatting Rules. Just click the "Edit Page" link at the bottom of the page.


{$$E_k\left(\frac {\theta_0} 2\right) + U\left(\frac {\theta_0} 2\right) = U(\theta_0) + \underbrace{E_k\left({\theta_0} \right)}_{0} $$} {$$E_k\left(\frac {\theta_0} 2\right) = mgl\left[\cos(\theta_0/2)-\cos(\theta_0)\right]$$}


{$$ \begin{matrix} I_\pm(t) I_\pm(t-\tau) & & e^{i\gamma B(\mp t \mp (t-\tau))} =& e^{i(\mp 2t \pm \tau)}\\ I_\pm(t) I_\mp(t-\tau) & & e^{i\gamma B(\mp t \pm (t-\tau))} =& e^{\mp i \tau}\\ I_\pm(t),I_z(t-\tau) &\mbox{ leading to oscillating terms }& & e^{\mp i\gamma Bt} \\ I_z(t) I_\pm(t-\tau) & & & e^{\mp i\gamma B (t-\tau)}\\ I_z(t)I_z(t-\tau) & & & 1 \\ \end{matrix} $$}

prova m3

{$$ \begin{align*} A_{20} &= \sqrt{\frac 3 2} D_{zz} = \sqrt{\frac 3 2}(3\cos^2\theta-1) \propto Y^0_2(\theta,\phi)\\ A_{2\pm 1} &=\mp (D_{xz}-iD_{yz}) = 3\sin\theta\cos\theta e^{\mp i \phi} \propto Y^{\mp 1}_2(\theta,\phi)\\ A_{2\pm 2} &= \frac 1 2 (D_{xx} - D_{yy} \pm 2i D_{xy}) = \frac 1 2 \sin^2\theta e^{\pm 2i\phi} \propto Y^{\mp 2}_2(\theta,\phi) \end{align*} $$}

{$$ \begin{align*} A_{20} &= \sqrt{\frac 3 2} D_{zz} = \sqrt{\frac 3 2}(3\cos^2\theta-1) = Y^0_2(\theta,\phi) \\ A_{2\pm 1} &=\mp (D_{xz}-iD_{yz}) = 3\sin\theta\cos\theta e^{\mp i \phi}= Y^{\mp 1}_2(\theta,\phi) \\ A_{2\pm 2} &= \frac 1 2 (D_{xx} - D_{yy} \pm 2i D_{xy}) = \frac 1 2 \sin^2\theta e^{\pm 2i\phi} = Y^{\mp 2}_2(\theta,\phi) \end{align*} $$}

We first divide by a to get {$ %num=1% x^2+b/ax+c/a=0 $}

Then we complete the square and obtain {$ %num% x^2+b/ax+(b/(2a))^2-(b/(2a))^2+c/a=0 $}

The first three terms factor to give {$ %num% (x+b/(2a))^2=(b^2)/(4a^2)-c/a $}

Now we take square roots on both sides and get {$ %num% x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a) $}

Finally we move {$ b/(2a) $} to the right and simplify to get the two solutions: {$ %num=5% x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a) $}

Adding a silly note to get a quote as a superscript r' vs. r'

{$$ x^2+y^2 $$}

{$$ \begin{align} \hbar^2 \overline{\omega_{e+}(t)\omega_{e+}(t-\tau)} e^{-i\gamma B (2t-\tau)} [I_+,[I_+,I_z]] & = -\hbar^2 \overline{\omega_{e+}(0)\omega_{e+}(\tau)} e^{-i\gamma B (2t-\tau)} I_+ & \\ {\color{red} {\hbar^2 \overline{\omega_{e+}(t)\omega_{e-}(t-\tau)} e^{-i\gamma B \tau} [I_+,[I_-,I_z]] } } & = {\color{red}{\hbar^2 \overline{\omega_{e+}(0)\omega_{e-}(\tau)} e^{-i\gamma B \tau} I_+ } } & {\color{red}\longleftarrow} \\ & = {\color{red}{\hbar^2 \overline{\omega_{e-}(0)\omega_{e+}(\tau)} e^{i\gamma B \tau} I_-} } & {\color{red}\longleftarrow} \\ \hbar^2 \overline{\omega_{e-}(t)\omega_{e-}(t-\tau)} e^{i\gamma B (2t-\tau)} [I_-,[I_-,I_z]] & = - \hbar^2 \overline{\omega_{e-}(0)\omega_{e-}(\tau)} e^{i\gamma B (2t-\tau)} I_+ \\ \hbar^2 \overline{\omega_{e+}(t)\omega_{ez}(t-\tau)} e^{-i\gamma B t} [I_+,[I_z,I_z]] & = 0 \\ \hbar^2 \overline{\omega_{e-}(t)\omega_{ez}(t-\tau)} e^{i\gamma B t} [I_-,[I_z,I_z]] & = 0 \\ \hbar^2 \overline{\omega_{ez}(t)\omega_{e+}(t-\tau)} e^{-i\gamma B (t-\tau)} [I_z,[I_+,I_z]] & = \cdots\\ \hbar^2 \overline{\omega_{ez}(t)\omega_{e-}(t-\tau)} e^{i\gamma B (t-\tau)} [I_z,[I_-,I_z]] & = \cdots \\ \hbar^2 \overline{\omega_{ez}(t)\omega_{ez}(t-\tau)} [I_z,[I_z,I_z]] & = 0 \\ \end{align}$$}

Edit - History - Print - PDF - Recent Changes - Search
Page last modified on March 10, 2024, at 05:14 PM