Chapters:
|
MuSR /
KuboDistributions< Kubo relaxation functions | Index | A simple prototype model of dynamical relaxation? > Assume a Gaussian distribution of Kubo Toyabe second moments {$\Delta$} {$ P(\Delta)=\frac 1 {\sigma\sqrt{2\pi}} e^{- \frac 1 2 \left(\frac{\Delta-\mu}{\sigma}\right)^2}$} Then the average relaxation function {$G(\sigma,\mu;t)$} may be obtained directly from the KT relaxation functions {$G(\Delta;t)$} {$G(\Delta;t)= \frac 1 3 \left( 1+2(1-\Delta^2t^2)e^{- \frac 1 2 \left(\frac{\Delta}{\sigma}\right)^2}\right) $} as {$G(\sigma,\mu;t)= \int_{-\infty}^{\,\,\,\,\,\,\,\,\,\,\,\,\infty} G(\Delta;t)P(\Delta)d\Delta $} The integral splits into three terms, the first being {$\frac 1 3 \int_{-\infty}^{\,\,\,\,\,\,\,\,\,\,\,\,\infty} P(\Delta)d\Delta = \frac 1 3$} The second term is {$\frac 2 3 \frac 1 {\sigma\sqrt{2\pi}}\int_{-\infty}^{\,\,\,\,\,\,\,\,\,\,\,\,\infty} e^{- \frac 1 2 \left(\frac{\Delta}{\sigma}\right)^2} e^{- \frac 1 2 \left(\frac{\Delta-\mu}{\sigma}\right)^2}d\Delta $} The exponent in the integral is {$-\frac 1 2 \left[\left(\frac{\Delta}{\sigma}\right)^2 +\left(\frac{\Delta-\mu}{\sigma}\right)^2 \right]=-a\Delta^2+b\Delta-c$} with {$\begin{eqnarray*} a&=&\frac 1 {2\sigma^2} (1+\sigma^2t^2) \\ b &=& \frac \mu {\sigma^2} \\ c & =& \frac {\mu^2}{2\sigma^2} \end{eqnarray*}$} According to Wolfram {$ \int_{-\infty}^{\,\,\,\,\,\,\,\,\,\,\,\,\infty} e^{-ax^2+bx} dx=\sqrt{\frac \pi a} e^{\frac {b^2} {4a}} $} Therefore the second term is {$\frac 2 3 \frac 1 {\sigma\sqrt{2\pi}}e^{-\frac {\mu^2}{2\sigma^2}}\sqrt{\frac \pi a} e^{\frac {b^2} {4a}} = \frac 2 3 e^{-\frac {\mu^2}{2\sigma^2}}\,e^{\frac {\mu^2} {2(1+\sigma^2t^2)}}\,\sqrt{\frac 1 {1+\sigma^2t^2}} $} The third term is {$-\frac {2t^2} 3 \frac 1 {\sigma\sqrt{2\pi}}\int_{-\infty}^{\,\,\,\,\,\,\,\,\,\,\,\,\infty} \Delta^2 e^{- \frac 1 2 \left(\frac{\Delta}{\sigma}\right)^2} e^{- \frac 1 2 \left(\frac{\Delta-\mu}{\sigma}\right)^2}d\Delta $} According to Wolfram {$ \int_{-\infty}^{\,\,\,\,\,\,\,\,\,\,\,\,\infty} x^2 e^{-ax^2+bx} dx=\sqrt{\frac \pi a} e^{\frac {b^2} {4a}} \left[ \frac {b^2} {4a^2} + \frac 1 {2a}\right]$}
< Kubo relaxation functions | Index | A simple prototype model of dynamical relaxation? > |