Chapters:
|
MuSR /
HMuLongitudinal< DMu | Index | New thoughts on FMuF > wip Let us consider an external field {$B$} along {$\hat \zeta$}, with Larmor frequencies {$\omega_\mu=2\pi\gamma_\mu B$} and {$\omega_H=2\pi\gamma_H B$} respectively. Thanks to the rotational invariance around the molecular axis we need to consider only the case {$\hat \zeta=\cos\theta \hat z + sin\theta \hat x$} and the Hamiltonian in the reference frame of the molecule is {$ {\cal H}_0 - \omega_\mu I_\zeta - \omega_H S_\zeta = \frac 1 2\, \left(\begin{array} - \omega_d\quad -(\omega_\mu+\omega_H)\cos\theta & -\omega_\mu\sin\theta & -\omega_H\sin\theta & \quad 0\quad \\ -\omega_\mu\sin\theta & \omega_d+(\omega_\mu-\omega_H)\cos\theta & \omega_d & -\omega_H\sin\theta \\-\omega_H\sin\theta & \omega_d& \omega_d - (\omega_\mu-\omega_H)\cos\theta & -\omega_\mu\sin\theta \\ 0 & -\omega_H\sin\theta & -\omega_\mu\sin\theta & -\omega_d + (\omega_\mu+\omega_H)\cos\theta \end{array}\right )$} < DMu | Index | New thoughts on FMuF > |