Recent Changes · Search:

Dispense


Condensed Matter

Chapters:

Appendices


PmWiki

pmwiki.org

edit SideBar

HartreeUnits

< Crystals as Many Body? | Index | Born-Oppenheimer approximation >


Hartree units

Remind that the Bohr radius is given by

{$$a_B = \frac {4\pi\varepsilon_0 \hbar^2}{e^2 m}$$}

We can therefore define the Hartree s twice the first ionization energy of hydrogen and rescale energies to this quantity

{$$H = \frac {\hbar^2}{m a_B^2} = \frac {2e^2}{4\pi\varepsilon_0 a_B}$$}

Let's introduce Hartree units: lengths are rescaled to the Bohr radius, {$a_B$}, hence space derivatives to its inverse and energyies to the Hartree

{$$ \begin{align*} \mathbf r & \rightarrow a_B \mathbf r\\ \boldsymbol \nabla & \rightarrow \frac{\boldsymbol \nabla}{a_B}\\ E & \rightarrow \frac {\hbar^2}{m a_B^2} E \end{align*}$$}

We can now rewrite the simplest many (two) body Hamiltonian, helium, as

{$${\cal H} = -\sum_{i=1}^2 \left(\frac {\nabla^2} 2 + \frac Z {r_i}\right) + \frac 1 {r_{12}}$$}

with {$Z=2$} and {$r_{12}=|\mathbf r_2-\mathbf r_1|$}.

Edit - History - Print - PDF - Recent Changes - Search
Page last modified on February 21, 2019, at 08:30 PM