Chapters:
|
MuSR /
FMuF< A special case: a muon with few nuclei | Index | FMu > The dipolar Hamiltonian in zero external field
exploiting the rotational invariance to choose {$\hat r =\hat z$} and ignoring the F-F interaction, the zero field Hamiltonian can be written {$ \frac {\cal H} \hbar = -\omega_d (2 I_zF_z-I_xF_x-I_yF_y+ 2 I_zL_z-I_xL_x-I_yL_y) $} where {$ \omega_d=\mu_0\gamma_F\gamma_\mu h/(2 r^3) $}, {$I_\alpha, \alpha=x,y,z$} are the muon spin operators and {$F_\alpha,L_\alpha$} those of the fluorine and the gyromagnetic ratios are {$\gamma=\nu/B$}. In the tensor space of {$F\otimes I\otimes L$}, with the basis of {$F_z,I_z,L_z$} one has {$\frac {\cal H} \hbar=\omega_d \left( \begin{array} \quad -1\quad & \quad 0\quad & \quad 0\quad & \quad 0\quad & \quad 0\quad & \quad 0\quad & \quad 0\quad & \quad 0\quad \\ 0& 0& \frac 1 2& 0& 0& 0& 0& 0\\ 0& \frac 1 2& 1& 0& \frac 1 2& 0& 0& 0\\ 0& 0& 0& 0& 0& \frac 1 2& 0& 0\\ 0& 0& \frac 1 2& 0& 0& 0& 0& 0\\ 0& 0& 0& \frac 1 2& 0& 1& \frac 1 2& 0\\ 0& 0& 0& 0& 0& \frac 1 2& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& -1\end{array} \right)$} (the order in the tensor product is outer to inner, from left to right, i.e. {$F_z$} is an 8x8 matrix with all 1/2 along the top half of the diagonal and -/12 along the bottom half, whereas {$L_z$} alternates +1/2 and -1/2 along the diagonal). The Hamiltonian has doubly degenerate eigenvectors and one is clearly {$-\omega_d$} with eigenvectors {$|1\rangle = \left( \begin{array} 1\\0\\0\\0\\0\\0\\0\\0 \end{array}\right); \qquad\qquad |8\rangle = \left( \begin{array} 0\\0\\0\\0\\0\\0\\0\\1\end{array}\right) $}. The others may be found by considering the block of the 2nd, 3rd and 5th rows and columms of {$\cal H$} {$ \left( \begin{array} 0& \frac 1 2& 0\\ \quad\frac 1 2\quad& \quad 1\quad & \quad \frac 1 2\quad \\ 0& \frac 1 2& 0 \end{array}\right) $} which has eigenvalues {$\omega_2=0$} and {$\omega_{3,4}=\omega_d\frac {1\pm \sqrt 3} 2$}. The identical bloc of the 4th, 6th and 7th rows and columns yields the same solutions. Summarizing the eight eigenvalues of the Hamiltonian are: {$ \omega_d (-1, 0,\frac {1 + \sqrt 3} 2,\frac {1 - \sqrt 3} 2, 0, \frac {1 + \sqrt 3} 2,\frac {1 - \sqrt 3} 2,-1) $} To find the eigenvector of the block one must solve the three simultaneous equations {$ \left\{ \begin{array} \frac b 2 = \omega_j a \\ \frac a 2 + b + \frac c 2 = \omega_j b \\ \frac b 2 = \omega_j c \end{array} \right. $} For {$\omega_2=0$} one has {$ a=-c$} and {$b=0$}. Considering the full Hamiltonian there are two such states (as well as the linear combinations of these two), e.g.: {$|2\rangle = \frac 1 {\sqrt 2} \,\left( \begin{array} \quad 0\\ \quad 1\\ \quad 0\\0\\ -1\\ \quad 0\\ \quad 0\\ \quad 0 \end{array}\right); \qquad\qquad |5\rangle = \frac 1 {\sqrt 2} \,\left( \begin{array} \quad 0\\ \quad 0\\ \quad 0\\-1\\ \quad 0\\ \quad 0\\ \quad 1\\ \quad 0\end{array}\right) $}. The other two cases yield {$ b= 2\omega_j a$} and {$c=a$}. Considering again the full Hamiltonian this yields the remaining four states which can be written as: {$ a \left( \begin{array} \quad 0\\ \quad 1\\ 2\omega_j/\omega_d \\ 0\\ \quad 1\\ \quad 0\\ \quad 0\\ \quad 0 \end{array}\right); \qquad\qquad a \left( \begin{array} \quad 0\\ \quad 0\\ \quad 0 \\ \quad 1\\ \quad 0\\ 2 \omega_j/\omega_d \\ \quad 1\\ \quad 0 \end{array}\right).$}. Imposing the normalization one obtains {$ a=\frac 1 2 \sqrt{1\mp \frac 1 {\sqrt3}} $}, respectively, for the two eigenvalues {$\omega_j=\frac{\sqrt 3 \pm 1} 2$}, that is {$|3\rangle = \frac 1 2 \sqrt{1-\frac 1{\sqrt 3}} \left( \begin{array} \quad 0\\ \quad 1 \\ \sqrt 3 +1 \\ \quad 1 \\ \quad 0 \\ \quad 0\\ \quad 0 \end{array}\right); \qquad\qquad |4\rangle = \frac 1 2 \sqrt{1+\frac 1{\sqrt 3}}\left( \begin{array} \quad 0\\ \quad 1\\ \sqrt 3 -1 \\ \quad 0\\ \quad 1\\ \quad 0 \\ \quad 0\\ \quad 0 \end{array}\right)$} and {$ |6\rangle = \frac 1 2 \sqrt{1-\frac 1{\sqrt 3}} \left( \begin{array} \quad 0\\ \quad 0\\ \quad 0 \\ \quad 1\\ \quad 0\\ \sqrt 3 +1 \\ \quad 1\\ \quad 0 \end{array}\right); \qquad\qquad |7\rangle = \frac 1 2 \sqrt{1+\frac 1{\sqrt 3}} \left( \begin{array} \quad 0\\ \quad 0\\ \quad 0 \\ \quad 1\\ \quad 0\\ \sqrt 3 -1 \\ \quad 1\\ \quad 0 \end{array}\right) $}.
This is the correct expression for a crystalline array of equally aligned FMuF molecules. For a polycrystalline sample we must take the average over {$\theta$} {$\overline{|\langle m|\sigma_\zeta|n\rangle|^2} = \frac 1 3 \left(|\langle m|\sigma_z|n\rangle|^2 + 2 |\langle m|\sigma_x|n\rangle|^2\right) $} We summarize below the three relevant matrices: {$v$}, with eigenstates along columns, and the two observables {$ v=\left( \begin{array}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & c & a & a' & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b' & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a & a' & c & 0\\ 0 & -c & a & a' & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b & b' & 0 & 0 \\ 0 & 0 & 0 & 0 & a & a' & -c & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right),\qquad \sigma_z=\left( \begin{array}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&-1&0&0&0&0&0\\0&0&0&-1&0&0&0&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&-1&0\\0&0&0&0&0&0&0&-1 \end{array}\right),\qquad \sigma_x=\left( \begin{array} 0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&0&0&0&0&1&0\\0&0&0&0&0&0&0&1\\ 0&0&0&0&1&0&0&0\\0&0&0&0&0&1&0&0 \end{array}\right) $} where {$ c=\frac 1 {\sqrt 2}, \qquad a,a'=\frac 1 2 \sqrt{1\mp \frac 1 {\sqrt 3} }, \qquad b,b'=\pm \sqrt{ \frac 1 2 \left(1\pm \frac 1 {\sqrt 3}\right) } $} Hence we have the following non vanishing matrix elements for {$\sigma_z$}: {$ \langle m |\sigma_z|k\rangle = \delta_{mk}, \qquad\qquad \mbox{for} \qquad m=1,2,5,8 $} {$ \langle 3 |\sigma_z|3\rangle = \langle 6 |\sigma_z|6\rangle = 2 a^2-b^2= -\frac 1 {\sqrt3} $} {$ \langle 4 |\sigma_z|4\rangle = \langle 7 |\sigma_z|7\rangle = 2 a'^2-b'^2= \frac 1 {\sqrt3} $} {$ \langle 3 |\sigma_z|4\rangle = \langle 6 |\sigma_z|7\rangle = 2 aa'-bb'= \sqrt{\frac 2 3} $} All but the last give rise to constant polarization in time. Since {$\omega_{34}=\omega_3-\omega_4=\omega_6-\omega_7=\omega_d\left(\frac {1+\sqrt 3} 2 - \frac {1-\sqrt 3} 2\right) = \sqrt3 \omega_d$} the last is the coefficent of two identical time dependent terms {$2\cos\omega_{34}t$}. The non vanishing matrix elements for {$\sigma_x$} are: {$ \langle 1 |\sigma_x|3\rangle = \langle 6 |\sigma_x|8\rangle = b = \sqrt{ \frac 1 2 \left(1 + \frac 1 {\sqrt3}\right)} $} {$ \langle 1 |\sigma_x|4\rangle = \langle 7 |\sigma_x|8\rangle = b' = \sqrt{ \frac 1 2 \left(1 - \frac 1 {\sqrt3}\right)} $} {$ \langle 2 |\sigma_x|5\rangle = 1 $} {$ \langle 3 |\sigma_x|6\rangle = 2a^2= \frac 1 2 \left( 1-\frac 1 {\sqrt3}\right) $} {$ \langle 3 |\sigma_x|7\rangle = \langle 4 |\sigma_x|6\rangle = 2aa'= \frac 1 {\sqrt6} $} {$ \langle 4 |\sigma_x|7\rangle = 2a'^2= \frac 1 2 \left( 1+\frac 1 {\sqrt3}\right) $} which are related to the following transition frequencies {$ \omega_{13}=\omega_{68}=\omega_d\left(\frac {1+\sqrt 3} 2 - (-1)\right)=\omega_d\frac {3-\sqrt 3} 2 $} {$ \omega_{14}=\omega_{78}=\omega_d\left(\frac {1-\sqrt 3} 2 - (-1)\right)=\omega_d\frac {3+\sqrt 3} 2 $} {$ \omega_{25}=\omega_{36}=\omega_{47}=0$} {$\omega_{37}=-\omega_{46}=\omega_d\left(\frac {1+\sqrt 3} 2 - \frac {1-\sqrt 3} 2\right)=\sqrt3 \omega_d $} Putting all this together one gets {$ P_{\zeta\zeta}(t)=\frac 1 6 \left( 3 + \cos \sqrt 3 \omega_d t + (1+\frac 1 {\sqrt 3})\cos \frac{3+\sqrt 3} 2 \omega_d t + (1-\frac 1 {\sqrt 3})\cos \frac{3-\sqrt 3} 2 \omega_d t \right) $} This is the result experimentally observed in LiF by J.H. Brewer et al. |